基于改进双深度Q网络在变压器不平衡样本故障诊断的研究

  • 打印
  • 收藏
收藏成功


打开文本图片集

中图分类号:TP39;TP183;TM41 文献标识码:A文章编号:2096-4706(2025)21-0034-05

Research on Transformer Unbalanced Sample Fault Diagnosis Based on Imbalanced Classification Double Deep Q Network

(State Grid Xi'an Electric Power Supply Company,Xi'an 71oo32, China)

Abstract:To address the problem of model bias caused by unbalanced distribution of sample categories in transformer fault diagnosis,this paper proposesan Imbalanced Clasification Double DeepQNetwork (ICDDQN).Bydesigningadynamic categoryweightreward functionandcombiningKLdivergence toconstructasampledistributioncompensationmechanism,the contributionofdiferentcategoriesofsamplesisdynamicallyadjustedduringthemodeltrainingphase.Experimentsarecaried outbasedonaself-builtdatasetcontaining320Osetsofoilchromatographicdata.ThecomparisonresultsshowthattheFl-score convergence accuracy of ICDDQN reaches 99.25% ,which is superior to the DDQN baseline,and provides technical support for power equipment diagnosis under class imbalance conditions.

Keywords: transformer; fault diagnosis; Deep Reinforcement Learning; Neural Network

0 引言

变压器作为电力系统能量转换的核心枢纽设备,其运行可靠性直接关系电网安全[。(剩余5207字)

目录
monitor
客服机器人