基于改进深度强化学习算法的风电场功率优化控制

  • 打印
  • 收藏
收藏成功


打开文本图片集

中图分类号:TP18;TM614 文献标识码:A 文章编号:2096-4706(2025)21-0044-09

Power Optimization Control of Wind Farms Based on Improved Deep ReinforcementLearning Algorithm

PENG Jian',LIUDongwen² (1.Hunan TraditionalChineseMedical College,Zhuzhou 412012,China; 2.GuangdongNanfengElectric AutomationCo.,Ltd.,Meizhou 514523,Chinal

Abstract:To address the problem of the decrease inoverall power generation in wind farms caused by wake effects and thediffculty inaccuratelyestablishing physical modelsofwindfarms,aDRLcontrol methodthatsimultaneouslyconsiders wakesteeringcontrolandaxialinductioncontrolisproposed.Thismethodusestheyawangleandthrustcoeffcientof wind turbinesas variables toimplementcoordinatedcontrolof thewake,mitigatingtheimpactofwindturbine wakesandensuring the maximizationofoverallpower generation inwindfarms.Toimprovetheeficiencyof trainingsampleutilization,animproved DRLalgorithmis proposed inthispaper, which adopts a prioritized experiencereplay strategyon theunimproved DRLalgorithm to asigndiffrentsamplingprioritiesaccoding todifferencesintheimportanceofexperiences.SimulationontheWFSim wind farmplatformdemonstrates thatcomparedwithothermethods,theproposedcontrolstrategycansignificantlyincreasetheactive poweroutputof wind farms.Compared with the unimproved DRLalgorithm,the proposed improved DRLalgorithmcan avoid falling into local optima and enhance training effectiveness.

Keywords: wind farm; wake effect; Reinforcement Learning; yaw control; induction control

0 引言

风能作为一种清洁、可再生的能源,其大规模开发与利用主要依托于风电场的建设与运营。(剩余12592字)

目录
monitor
客服机器人