基于深度学习和Arduino的生活垃圾分类装置设计

打开文本图片集
中图分类号:TP391.4 文献标识码:A 文章编号:2096-4706(2025)18-0179-05
Abstract: Aiming at the problems oftraditional household waste classification methods relying on manual work,low eficiencyandhighclasificationerrorrate,ahousehold wasteclasificationdevicebasedonDeepLearmingandArduinois designed.Thedevicetrainsandoptimizes the waste imagerecognition model throughDeep Learningalgorithm,deploys the modelonK210,andconnects thevoicebroadcastmodule,servo motorcontrolmodule,temperatureandhumiditymeasurement moduleandfulloaddetectionmodulethroughArduinodevelopmentboard,soastorealizethewasteclassficationfunction. The experimental results show thattherecognition accuracyof the device for four diferent kinds of waste is more than 90% (20 under three different light intensities. In normal use,the average recognition rate is as high as 97% .At the same time, the voice broadcast function,temperatureand humidity detection function and fulload detectioncan operate normallyduring the test process,which provides an intelligent solution for household and community domestic waste clasification.
Keywords:Deep Learning;Waste classification; Arduino; image classification
0 引言
“十四五”以来,习近平总书记重点强调“考察必看生态,坚持绿色发展”的指导思想,垃圾分类回收是我国高质量绿色发展战略中的重要环节。(剩余6802字)