基于预训练语言模型的用户评论情感分析

打开文本图片集
中图分类号:TP391 文献标识码:A
文章编号:2096-4706(2025)18-0059-06
Abstract: With the development of the Internet economy,text sentiment analysis has significant value in fields such as businessinteligence.Inviewofthelimitationsof tradiionalmethods (suchasTF-IDFandWord2Vec)inprocessingcomplex semantics,this paper studies the advantagesof pre-trained models (such as the ERNIE model and the BERTmodel) in Chinese sentiment analysis.Through comparative experiments onuser takeawayreviewdatasets,itis found that theERNIEmodel significantlyimprovestheclassificatioaccuracyandrobustnesscomparedwithtraditionalmethods intheMLPclassifierof the samestructure.Inorder tofurther breakthroughthelimitationsofasinglemodel,thispaperproposesadynamicgatingdualmodel fusion methodofusing the domainadaptabilityof BERTand theuniversal semantic abilityofERNIE,and theoutput oftheBERTpoling layerisgeneratedbythesigmoidfunctiontogeneratedynamic weights,thenthecontributionof the two models isrealized inreal-timeadaptive adjustment.Experiments show thatthe fusion model surpases the single model in precision,recallandFale,eielylaingdmaspicityndgeeralatioability.Iisfdtisf this method in Chinese sentiment analysis tasks.
Keywords: sentiment analysis;BERT model; ERNIE model; dynamic gating
0 引言
随着互联网和大数据技术的飞速发展,情感分析任务在商业、社会、学术等多个领域的重要性日益凸显[1],广泛应用于舆情监测、产品评价、智能客服、金融分析等领域。(剩余10977字)