AGF-UKAN:一种基于语义分割模块的高速转子轴振动特征提取框架

打开文本图片集
中图分类号:TP301.6;TP751 文献标识码:A
文章编号:2096-4706(2025)18-0029-06
Abstract:Inrecentyears,visual vibration measurement hasbeen favored in industrialequipment monitoringdue toits advantagesofnon-contact,long-istanceandeasyinstalation.However,inomplexindustrialevironments,thebackground complexityandnumerous interferencesmakeitdifculttorealizeigh-precisionsegmentationbytraditionalmethods,which in turtriggers measurement erors.Tothisend,thispaperproposesasegmentationetworkbasedontheAtetionMechanismand dynamic gating fusion of AGF-UKAN. Based on theoriginal UKAN architecture,the network designs a new type of up-sampling modulelightweight mixing.Atthesametime,it introducesadynamicgating fusion module,andadaptivelyadjuststhe fusion weightoftheencoderandthedecodercharacteristicsinthedecodingstage,effctivelyimprovingthesegmentationaccuracyand robustness.Ithispaper,extensiveexpeimentalvalidatinisardoutonvarietyfpublicdtasetsasellasself-soudrotor axis datasets,andtheresultsshowthatAGF-UKANsignificantlyoutperformsthetraditionalU-Netandotherbenchmark networks intermsofDSCandmoUindexes,whichfullydemonstratesitsremarkableefectiveness incomplexindustrialenvironments.
Keywords: image segmentation; Deep Learning; visual measurement; vibration extraction
0 引言
在工业设备的运行监控与故障诊断[中,转子轴的振动测量[具有至关重要的作用。(剩余7905字)