四足机器人室内导航的多模块优化Fast-SLAM算法研究

打开文本图片集
中图分类号:TP242.6 文献标识码:A 文章编号:2096-4706(2025)18-0169-05
Abstract:Aiming atthe problemsof insuffcient positioning accuracy,lowmapping effciencyand weak systemrobustness ofquadrupedrobots inindoorenvironment,thispaper proposesamulti-moduleoptimizedFast-SLAMalgorithm framework. Inthe front-endodometrystage,the inter-framemotionconstraintsoflaser pointcloudsareconstructedbasedontherange flowmodel,andtheadaptiveiterativeweightedleastsquares methodisintegratedtoimprovethaccuracyandcomputational efciencyofposeestimation.Inthestateestimationstage,thefuzzyadaptiveExtendedKalmanFilterisintroducedtoenhance therobustnessofthe system bydynamicallyadjusting themeasurement noisecovariance.Intheparticlefilterstage,the poseoptimization method combining Maximum Likelihood Estimation and gradient search is usedto effectivelyreduce the resampling errorandimprovethe mappingeffciency.Thealgorithmis deployedandverifiedonarealquadrupedrobotplatform. Theexperimentalresultsshowthat theaverage trajectoryerorissignificantlyreducedandthecalculationtimeissignificantly shortenedcompared withthetraditionalmethods,showinggoodenvironmentaladaptabilityandengineringaplicationpotential.
Keywords: indoor navigation; Fast-SLAM; range flow algorithm; Extended Kalman Filter; particle filter
0 引言
随着机器人系统与自主导航技术的持续发展,四足机器人在环境监测、工业应用与室内服务等领域具有广泛的前景。(剩余5615字)