基于贝叶斯优化的可解释XGBoost脑卒中风险分类研究

  • 打印
  • 收藏
收藏成功


打开文本图片集

中图分类号:TP301.6 文献标识码:A 文章编号:2096-4706(2025)18-0017-07

Abstract:Inthefeldofearlyrisk classificationand predictionof stroke,existing Machine Learningalgorithms have the problemsofinsuffcient performance andlackofclinicalinterpretability.Thisstudyproposes an XGBoost-SHAPmodelbased onBayesian Optimization (BO)algorithm tooptimize the performanceofclasification predictionmodelsand enhance their interpretability.The modeluses BOalgorithm togloballoptimize thehyperparameters ofthe XGBoost model todetermine the optimal parameterconfiguration,andthenconstructsanefcientandaccurateclasification predictionmodel.Theexperimental results show thatthevaluesofaccuracy,F1andAUCoftheoptimized model reach0.930,0.927and0.930,respectively.In addition,thisstudyintroduces SHAPvalues toconductinterpretabilityanalysisofthe model toquantifytheinfluencedegree foreach featureonthepredictionresults.Theanalysisresultsreveal thatthereisapositivecorrelationbetweenageand blood glucose level, whilethereisacomplex nonlinearrelationship betweensmoking status and predictionresults.Thesefindings are consistent withclinical experienceandfurther enhancethe transparencyandconfidenceof themodelinclinicalapplication.

Keywords: stroke risk; XGBoost; explainable algorithm; Bayesian Optimization algorithm

0 引言

脑卒中是一种由脑部血液循环障碍引发的急性脑血管疾病,具有高发病率、高致死率和高致残率的特点,严重威胁着人类生命健康[1。(剩余8841字)

目录
monitor
客服机器人