基于GMR-GPR技能泛化优化策略研究

打开文本图片集
中图分类号:TP24 文献标识码:A 文章编号:2096-4706(2025)18-0039-06
Abstract:Learning from Demonstration (LfD)refers torobots learning humanoperations,anditis simpler than traditional scriptcommandoperationrobots.Robots need to leam human demonstrations toquicklyadapttochanges in theenvironment. Forskill generalzationafterlaingtheobot'sotiontrajectory,thetrajectorygeneratedbyGMR-GPRcannotaccuratelypass throughthe startingconstraint pointsofeach part.Basedonthe GMR-GPRalgorithm,it is improvedtoperform incremental GMR-GPR skill generalization.While keeping the true intentionof the teaching action as muchas possible,itcan also pass through theconstraintpointsatthesametime.Thegeneratedtrajectoryfurtherimprovesthegeneralizationintheconstraintpoint area.Inaddition,thefeasibilityof theproposedmethodisverifedandanalyzedbyperformingletersimulationand UR5erobot experiments.Theresults show thatthe improved method can provide areliable solution to restore thelossof the instructor's correction intention while retaining the true demonstration diagram as much as possible.
Keywords: Learning from Demonstration (LfD); incremental GMR-GPR; skill generalization; UR5e
0 引言
LfD通过人类示范教会机器执行任务,已广泛应用于行为模型的训练,推动了智能系统的进步。(剩余6682字)