基于改进GoogLeNet的试卷分数识别算法

打开文本图片集
中图分类号:TP391.1 文献标识码:A 文章编号:2096-4706(2025)18-0053-06
Abstract: Curently,there are problemsof time-consuming,cumbersomeness,high repetitiveness and low efficiency whenteachers inputcollegestudentstestpaperscores.Toefectivelyimprovetheaccuracyofdigitalrecognition intestpapers, this studyconstructsatestscorerecognitionalgorithmI-GoogLeNetbasedonimproved GoogLeNet.Firstly,itadjusts the contrastthroughthehistogramequalizationalgorithm CLAHEtohighlight thehandwritingof theredscores.Secondly,itadds anauxiliaryclasifertotheGoogLeNetarchitectureandreplaces theactivationfunctionwith Swishtorecognizetestcores. Finaly,itusestheApacheOibraytoexportandsvethesoresExperimentssowatoartifcialdatasets,teecoition accuracy of I-GoogLeNet is higher than that of GoogLeNet andLeNet-5 by 3.75% and 6.14% ,respectively.
Keywords: test score recognition; CLAHE; GoogLeNet; auxiliary classifier; Convolutional Neural Networks
0 引言
在教育领域,试卷成绩是检验学习成果的重要依据。(剩余9330字)