基于二阶图自编码器的复杂网络分析

  • 打印
  • 收藏
收藏成功


打开文本图片集

摘  要:为了充分利用复杂网络中蕴含的信息,增强图自编码器模型的表征能力,提出一种基于二阶图卷积网络的自编码器模型SeGCN-AE。先使用二阶图卷积网络提取实体属性和关系信息,生成低维特征表示;然后使用内积解码器重构复杂网络链接关系矩阵,并通过重构损失对模型进行优化。在两个基准复杂网络数据集实验中,SeGCN-AE的性能始终优于当前较为先进的基线模型,表明二阶关系的引入能够增强模型的表征能力,提升复杂网络分析任务的表现。(剩余6660字)

目录
monitor