基于卷积神经网络的轴承剩余寿命预测方法

  • 打印
  • 收藏
收藏成功


打开文本图片集

摘  要:为提高自动扶梯轴承剩余使用寿命(RUL)预测模型的预测精度和泛化能力,提出一种基于卷积神经网络(CNN)的轴承RUL预测方法。首先基于3σ准则对原始数据进行去噪,通过快速傅里叶变换获得其频率特征,其次将不同于传统时间序列数据划分方法的分层抽样应用于数据划分,并构造一个由三个卷积层和两个全连通层组成的深度卷积神经网络DCNN模型,最后利用NASA IMS数据集对预处理方法、DCNN模型精度和泛化能力进行评估,证明了该方法的优越性。(剩余7685字)

目录
monitor