深基坑降水函数的构建与智能实现

打开文本图片集
Abstract:Inordertonhancethescientifcandintellgentlevelofdeepfoundationpitdewateringdesign,amethdforconstuctinga foundationpitdewateringfunctionbycombiningumericalsmulationandmachineleamingwasproposed takingShanghaiasthersearch backgroudBasedonthetypicalgoundwater-landsubsidenedualcontrolonngoffoundationpidewateringiSanghaiaate dimensional groundwater numerical model was established for partitions and ⑦112-3 .The influence of factors,including foundation pit area,aspectatioexcavatiodepthandcurtainpenetrationdepthintoteaquiferonthegoundwaterdrawdoatdstacef 0.5H⋅ 1H,2H,and3H( H is the excavation depth of the foundation pit)outside the pit were analysed.On this basis,multiple linear regression method wasusedtoconstruct explicitfunctionalrelationships,andBPandMLPneuralnetwork modelswereutilizedtoimprovethe acuracyandapplicabilityofdrawdownprediction.Theresearchresultsindicatethatneuralnetworkmodelshavegoodfitingability for nonlinearrelationshipsbetweencomplexvariables,andthepredictedvaluesarehighlyconsistent withthe measureddatahichcan achieveapidandintelligentpredictionof groundwaterdrawdownatvarious monitoringpointsoutsidetefoundationpit.Teresearch provides new methodsand technical support for optimizing deep foundation pit dewatering schemes in complexurban areas.
Key words: deep foundation pit;dewatering prediction; numerical simulation; BP neural network; MLP neural network为制约工程安全与城市地质环境稳定的关键因素之一[1-2]。(剩余14550字)