基于逆频率比采样方法的洪水易发性评价

打开文本图片集
关键词:洪水易发性;机器学习模型;采样方法;逆频率比;伊河流域中图分类号:P954;TV882.1 文献标志码:A doi:10.3969/j.issn.1000-1379.2025.08.016引用格式:,,.基于逆频率比采样方法的洪水易发性评价[J].人民黄河,2025,47(8):96-101,108.
Assessment of Flood Susceptibility Based on Inverse Frequency Ratio Sampling Method
SUN Jiahui1,LIU Gengyuan², ZHAO Xueqiang² (1.Henan Bureau Group Co., Ltd. of China Chemical Geology,Zhengzhou 45Ooo0, China; 2.China Water Resources Pearl River Planning Surveying & Designing Co., Ltd., Guangzhou , China)
Abstract:Idertomprovethuacyoffloodsusptibityodeling,tissudpropsedofdpntsampligmethodalld inversefrequencyratiosampling.Tismethodacountedforspatialdependenceinselectingon-flodpointsamples.TakingtheYieRier BasininCinaasaneample,wefistcomparedtheinversefrequencyatiosamplingmetodwithtotraditioalsmplingmethods(andom samplingandtratifedsampling).Ten,thesemethodswereapliedintofoodsusceptibiltymodelingusingmacineleangmodelscludingRandomForest(RF)andMulti-LayerPereptron(MP)Teresusinicatetata)tespatialdistributioofon-floodpointsgeratedbytheinversefrequencyratioamplingmethodisferentfrothatgeneratedbyandomandstraifdsamplingexhbiingaivese gradientwithelevation.b)Teaccuracyofmachineleaingmodelsbasedonthinversefrequencyatiosamplingmethodisalhgherthan thatof stratifedsamplingandrandomsampling.FortheRFmodel,theAUCvaluesformodelsbiltbyusing inversefrquencyratiampling,stratifiedsamplingandrandomsamplingare0.97,O.94and0.90espectively.FortheMLPmodel,thevaluesareO.90,0.87and 0.86respectivelyTeproposedo-fodointsampligtodasimprovdteacuracyofloodsusceptiblitymodelingasdoachin learning to a certain extent.
KeyWords:flood susceptibility;machine learning models;sampling method;inverse frequency ratio;Yihe River Basin
0 引言
洪水是世界上最常见和最具灾难性的自然灾害之一,给全球各地造成严重的生命与财产损失[1-2],如何减少洪水造成的损失是一个重要的研究课题。(剩余9837字)