数字孪生黄河知识平台建设初探

  • 打印
  • 收藏
收藏成功


打开文本图片集

关键词:知识平台;大语言模型;知识图谱;历史场景匹配;数字孪生黄河中图分类号:TP393;TV882.1 文献标志码:A doi:10.3969/j.issn.1000-1379.2025.08.007引用格式:,,,等.数字孪生黄河知识平台建设初探[J].人民黄河,2025,47(8):32-38.

Preliminary Study on the Construction of the Digital Twin Yellow River Knowledge Platform

ZHU Binhao 1,2,3 , XIA Runliang4,LI Tao1,2.3,WU Dan 1,2,3 , DING Yukai 4 , LI Bing 1,2,3 ( (1.YellowRiver InstituteofHydraulicResearch,YRCC,Zhengzhou4503,China;.YelowRiverLaboratory,Zhengzhou40003, China;3.Engineering Technology Research Center of Henan Province Smart Water Conservancy, Zhengzhou 450o03,China; 4.Information Center,Ministry ofWaterResources,Beijing1OOo53,China)

Abstract:Inordertoimprovethefcencyandintellgencelevelofwateresoucesbusinessdecision-makinginthYelloRiverBasi, thisstudyitroducedlargelanguagemodel(LLM)andknowledgegraphtechnologytobuilddigitaltwinYellwRiverknowledgeplatfor. Aiingattheisuoftatickolegestorage,sutabilttrocssustrucueddataindaicusinseiosoftdiioal knowledgegraphs,awaterconservancyknowedgequestionansweringmechanismandmodelcaling mechanismbasedonLLMwerepro posed,andfuctiossucsuntfistantfloopretio“fourpr”santsstocaleatngndodgee trievalweredvelopd.Aweighedstatisticaladaptivedistacecalulatiotodaproosdtduceteisusfdimensialfer encesandetrvauiteferceiulti-atrutesilitatngPrctalalicatiosowstattlafosigfatl theresponsespeedoffdctroldecisiosandteacuracyofhistcalseemating.Thauacyofhdroloalodelcalse from 43% to 72% ,andthedistance domainiscompressed from50o.00-410o.00 to0.48-0.72,providing eficientandreliable knowledge service support for business decision-making in the Yellow River Basin.

Keywords:knowledge platform;LargeLanguageModel;knowledgegraph;historicalscene matching;digitaltwinYellowRiver

0 引言

随着计算机科学技术的发展,新一批人工智能技术为黄河流域精准决策提供了支撑。(剩余8316字)

monitor