多智能体编队中人工势场法的改进研究

打开文本图片集
DOI:10.16652/j.issn.1004-373x.2025.17.027 引用格式:,.多智能体编队中人工势场法的改进研究[J].现代电子技术,2025,48(17):181-186.
关键词:人工势场法;多智能体编队;局部最小值;衰减权重;斥力计算;权重分配中图分类号:TN911.1-34;TP391.9 文献标识码:A 文章编号:1004-373X(2025)17-0181-06
Application of improved artificial potential field method in multi-agent formation control
HEXing¹,BAI Yanhong1,²
(1.SchoolofElectronicInformationEngineering,TaiuanUiversityofSienceandTechnology,TauanO3O24,Cina; !CollegeoftellgentacuinustryaniUesityflctroicicdholoyinfea
Abstract:Sincethetraditionalartificialpotentialfieldmethodispronetofalingintolocalminima,animprovedartificial potentialfieldalgorithmwhichintroducesrepulsionattenuationweightisproposedaccording totheideaofdestroyingthe equilibriumstateofagentsatnon-targets.Thisalgorithmasignsweightstoobstaclesencounteredwithintheagent'sdetection rangeandapliestheseweightstothecalculationofrepulsiveforces exertedbytheobstacles.Theweightsdecayastheagent moves,ensuring thatthenetforceactingontheagentdoesnotbalanceoutbeforereaching thetarget,therebyalowing the agenttoescapelocalminia.Theresultsofthesimulationexperimentsdemonstratethat,incomparisonwiththetraditioalartificialpotentialfeldmethodandother methodsavoidinglocal minimasuchastherandomdisturbancemethodandtheedge-followingmethod,theproposedalgorithmavoidsthelocalminimaefectivelyandshowssignificantimprovementsinconvergence speed,stability and energy consumption.
Keywords:arificialpotentialfieldmethod;multi-agentformation;local minima;atenuationweight;repulsiveforcecalculation;weight allocation
0 引言
多智能体编队在军事、救援救灾、农业生产、仓储物流、交通管理等领域得到了广泛应用。(剩余6919字)