基于改进YOLOv8n的PCBA外观缺陷检测

  • 打印
  • 收藏
收藏成功


打开文本图片集

中图分类号:TN911.73-34 文献标识码:A 文章编号:1004-373X(2025)17-0176-05

DOI:10.16652/j.issn.1004-373x.2025.17.026 引用格式:,.基于改进YOLOv8n的PCBA外观缺陷检测[J].现代电子技术,2025,48(17)::176-180.

PCBA surfacedefectdetection based on improved YOLOv8n

ZHOU Zhiwei,HAN Bin

SchoolofInformationandControlEngineering,SouthwestUniversityofScienceandTechnologyMianyang6Chir

Abstract:Thedesignsof modernPCBA(printed circuit boardasembly)arecomplex,andtheirdensitiesare getting higher andhigher.Thedistancesbetweencircuitsandcomponentsaregetingcloser.Thishigh-densitylayoutresultsinmoretypesand smallrrangesofdefectsonPCBA,increasing thedificultyof defectdetection.ImprovingtheLSKmoduleinYOLOv8nby combininglargekernelandsmallkernelconvolutionscancapturefeaturesofdiferentscales,therebyimprovingthereliabilityof appearance defect detection.Inviewof this,aPCBAappearance defectdetection method basedonimproved YOLOv8nis studied.FirstlyeferigtotenetworkstructureofSlim-neck,theetworkstructureofNeckisimproedtoachievelighweight. Secondly,theintroductionofLSK modulesenhances themeanaverage precision (mAP)reduced due tothe lightweightnetwork structure.Then,byintroducingtheSEmodule,thenetworkstructureoftheHeadisimprovedtofurtherenhancethedetection performanceof themodel.Finally,theMPDIUlossfunctionisintroduced toenhance theabilityofsmallojectdetection.The experimentalresultsshowthatthemAPoftheimproved modelproposed inthispaperreaches95.2%onthePCBAappearance defect dataset, increasing by 3.1% in comparison with that of YOLOv8n. The validity of the proposed model is verified.

Keywords:PCBA;appearance inspection;defect detection; improved YOLOv8n; lossfunction;lightweightnetwork

0 引言

印制电路板(PCB)作为电子元器件安装和电路电气连接的载体,是各类型电子产品的重要组成部分,提高其生产制造水平,对于计算机、消费电子、通信设备等行业发展有着至关重要的作用。(剩余5216字)

monitor