改进YOLOv8的无人机搜救小目标检测方法

打开文本图片集
DOI:10.16652/j.issn.1004-373x.2025.17.025 引用格式:,,,等.改进YOLOv8的无人机搜救小目标检测方法[J].现代电子技术,2025,48(17):167-175.
关键词:无人机搜救;小目标检测;YOLOv8;特征融合;检测头;注意力机制中图分类号:TN911.73-34;TP391.4 文献标识码:A 文章编号:1004-373X(2025)17-0167-09
nproved YOLOv8basedsmallobject detectionmethol forUAVsearchandrescue
JINSiyu,LIJiacheng,HUANGLan,CHENZhongju,ZHANWei (Collge of Computer Science,Yangtze University,Jingzhou 434023, China)
Abstract:Asmallobject detection model YOLOv8-CFTbasedonimproved YOLOv8 isproposed.It aims to improve the smallobjetdetectionperformance when UAVs performsearchandrescue misions incomplexoutdor environments.This model strivestoenhancefeatureextractioncapabilitiesbyintroducingtheC2F-SWCmodule.Meanwhile,itcombinesFADPN(feature aggregatinanddifusion pyramidnetwork)torealizeeficientfeaturefusion.Further,the TDHmoduleisusedtooptimize the detection head tobalance detectionaccuracyanddetectioneffciency.TheYOLOv8-CFTmodel wastestedonthe UAVsearch andrescuedataset UAVSRD.The YOLOv8-CFTmodel issignificantly beterthanthe benchmark YOLOv8 modelin termsof precision rate,recall rate and mAP,among which mAP @0.5 and mAP@0.5: 0.95 increase by 3.8% and 8.9%,respectively. ExperimentalresultsshowthattheYOLOv8-CFTmodelhasbetersmallobjectdetectioncapabilities inUAVsearchandrescue missions.
Keyword:UAVsearchandrescue;small object detection;YOLOv8;feature fusion;detection head;atention mechan
0 引言
无人机(UAV凭借其操作简便、灵活机动的优势,逐渐成为复杂环境中执行任务的理想工具,广泛应用于农业监控、灾害救援等多个领域-2]。(剩余15403字)