改进YOLOv8的雾天目标检测算法:BRES-YOLO

  • 打印
  • 收藏
收藏成功


打开文本图片集

DOI:10.16652/j.issn.1004-373x.2025.17.013 引用格式:,等.改进YOLOv8的雾天目标检测算法:BRES-YOLO[J].现代电子技术,2025,48(17):85-92.

关键词:目标检测;雾天驾驶;YOLOv8;BiFormer;多尺度注意力机制;C2f-RepGhost中图分类号:TN911.73-34;TP391.4 文献标识码:A 文章编号:1004-373X(2025)17-0085-08

Improved YOLOv8 based foggy object detection algorithm: BRES-YOLO

MAOHanwei,LIShixin,ZHOULiming,WANGPeng,ZHU Zhiren (SchoolofElectronicEngineering,TianjinUniversityof TechnologyandEducation,Tianjin3oo22,China)

Abstract:Visibilityisreduced infoggyscenarios,andtheobjectinformationcapturedbyvehiclesinfoggyweatherisvague andincomplete,soitispronetofalsedetectionandmissddetection.Inviewof this,animprovedYOLOv8basedfoggyobject detectionalgorithmBRES-YOLOisproposed.FirstlyBiFormerisintroducedtoreplacethebackbonefeatureextractionetwork tocapturediferentsemanticfeatures,sostoenhancetheetectionaccuracyofthemodel.SecondlyanEMA(eficientmultiscaleattention)moduleisaddedtotheneck network toenhance the model'satentiontotheobject.TheSPD-Conv(space-todepthconvolution)isintroducedtoreplace theConvintheoriginalmodel toimprovethedetectionperformancewhendealing withimages withlowresolutionandsmallobjects.TheMPDIoU(minimumpointdistancebasedIoU)isusedtoreplace the originallossfunctiontoimprovethelocalizationauracyandclasificationperformanceofthedtectionframe.FinalytheCfRepGhoststructureisintroducedtoreplacetheoriginalC2f moduletolightenthemodelandreduce thecomputational complexityofthemodel.Theexperimentalresultsshowthatthe meanaverage precisionmAP@0.5of BRES-YOLO modelon RTTSdatasetis increasedby5.8%,anditsmAP@0.5:0.95isincreased by5.4%incomparisonwiththoseof YOLOv8n.In summary,the BRES-YOLO model can accomplish the task of object detection in foggy scenes more accurately.

Keywords:objectdetection;driving infoggyweather;YOLOv8; BiFormer;multi-scale atention mechanism; C2f-RepGhost

0 引言

随着科技的飞速发展,目标检测逐渐成为自动驾驶、无人机控制领域的关键技术。(剩余12808字)

monitor
客服机器人