全局上下文引导的双代价聚合立体匹配网络

打开文本图片集
关键词:立体匹配;特征提取;全局上下文信息;代价体;双分支代价聚合;多尺度特征;特征融合;视差回归中图分类号:TN711-34;TP391.41 文献标识码:A 文章编号:1004-373X(2025)17-0104-08
Stereo matching network with global context guided dual-cost aggregation
FANG Weizhou,MENG Xiaoyan1,2,3,ZHOU Hong1 ,DING Xiaochen1 (1.SchoolofComputerandInformationEngineering,XinjiangAgriculturalUniversity,Urumqi83oo52,China; 2.Ministry of Education Engineering Research Center for Intelligent Agriculture,Urumqi 830o52, China; 3.XinjiangAgricultural Informatization Engineering TechnologyResearch Center,Urumqi 83oo52,China)
Abstract:However,currentstereomatchingalgorithmssillfacesubstantialchallengesintexturelessareas,occluded regions,andareaswithblurrededge.Inviewofthis,aglobalcontextguideddual-costaggregationstereomatchingnetwork GCDANetisproposed.Firstly,inthephaseoffeatureextraction,theatentionmodulethatguidestheglobalcontextfeaturesis usedtocapturethedetailsoffeaturesandrichglobalcontextinformation,soastoimprovetheexpresiveabilityandrousess offeatures.Next,agroup-wisecostvolumeandaConcatVolumeareconstructed,with each cost volume procesedseparately. Then,adual-branchcostaggregationstructureisproposed.Withthedesignedmulti-scaleatentionfeaturefusionmodule,the featuresoftheupperandlowerbranchesof thecostaggregation networkandthemulti-scale featuresinthefeatureextraction modulearefsed,sotoaicuatedigutiogoetricfoaionallspritesisldto obtainthedisparitymap.TheexperimentalresultsshowthattheperformanceofGCDANetisbeterthanthatofthebenchmark model GWCNet on multiple datasets.Specifically,the evaluation indicator EPE and D1 on the SceneFlow dataset are reduced to 0.60 pixel and 2.08% ,respectively;onthe KITTI2O12dataset,the evaluation indicator3pixel-All and3 pixel-Nocarelowered to 1.61% and 1.29% ,respectively;andon theKITTI2O15dataset,theevaluation indicator D1 -All forall pixel regionsisreduced to 1.94% .The proposed network has strong adaptabilityand accuracy in handling complex scenes,and has a wide application prospect in thefieldsthatneed precise stereo matching,such asautonomous driving,objectdetectionand3Dreconstruction.
Keywords:stereo matching;featureextraction;globalcontextinformation;costvolume;dual-branchcostaggregation; multiscale feature; feature fusion; disparity regression
0 引言
双目立体视觉是计算机视觉领域中一个重要的研究方向,该技术基于视差原理恢复物体三维几何信息,在三维重建、机器人、无人驾驶、目标检测等-4诸多领域具有广泛应用。(剩余12111字)