基于双池DDPG的边缘计算卸载延时性能研究

  • 打印
  • 收藏
收藏成功


打开文本图片集

中图分类号:TN929.5-34 文献标识码:A 文章编号:1004-373X(2025)17-0117-07

DOI:10.16652/j.issn.1004-373x.2025.17.018引用格式:,等.基于双池DDPG的边缘计算卸载延时性能研究[J].现代电子技术,2025,48(17):117-123.

Abstract:Withtheproliferationofcomputation-intensiveandlatency-sensitiveservices,itisdificultforthetraditional cloudcomputing modeltomettherequirementsoflowlatencyandhigh-qualityservices.Taskscanbeofloaded todgesubnets toreducelatencyandaleviatenetworkcongestionbythedistributededgecomputing mode.Inviewof theoffoadingproblemof collaborativecomputingonedgecomputingservers,acollaborativecomputing resourcealocationalgorithmbasedondep reinforcementlearningisproposed.Firstly,theoptimizationobjectiveisdeterminedaccordingtotheestablishedheterogneous edge network odel,thetasklatencyisinimied,andtheewardfunctionisiven.SecondlyaccordingtothetraditioalG (deepdeterministicpolicygradient)algorithm,thedual-polisintroducedtoclassifyandstorethedatatoimprovethequalityof empiricaldata.Finally,theagentistrainedtofindoutanoptimalstrategytoaapttotheenvironmenttoachieveboththeload balancingandtheresourceefectivealocationamongservers.Simulationresultsshowthat theimprovedD3PG(dual-poolDDPG) algorithmfullyconsiderstheheterogeneityofedgesubnetsandthemobilityofedgedevices,nditstask latencyisreducedby 3.8%~24.8%in comparison with that of the traditional learningalgorithms.

Keywords:heterogeneousnetwork;edge computing;computationofloading;task latency;deepreinforcementlearning; D3PG

0 引言

随着无线通信技术的发展,计算密集型和延迟敏感型边缘应用业务不断涌现,这对网络边缘侧的数据、算力、存储等需求大幅提高。(剩余11306字)

monitor