多低轨卫星协作的边缘计算卸载与资源分配策略

  • 打印
  • 收藏
收藏成功


打开文本图片集

中图分类号:TN929.5-34 文献标识码:A 文章编号:1004-373X(2025)17-0007-09

引用格式:,等.多低轨卫星协作的边缘计算卸载与资源分配策略[J].现代电子技术,2025,48(17):7-15.

Edge computing offloading and resource allocation strategy for multi-LEO satellitecollaboration

YANGLiming,ZHOU Yuqian,WANGWenhao,ZHAOHongjun (Schoolfoaidoatigoigsitosdeletiso

Abstract:Low earth orbit (LEO)satelites with widecoveragecan beequipped with mobile edge computing (MEC)server with computing power toprovidemoreeficientcommunicationservices for ground terminalequipment (GTE).Inthispaper,a strategyis proposedonthebasisofconsideringthefactorssuchas mobilityandresource limitationofLEOsatelites,as wellas thecontinuousactionspaceofthecomputingoffoadingproblem.ThecomputingoffoadingproblemistransformedintoaMarkov decisionprocess(MDP)forthejointofloading of multipleLEOsatelltes.Thesystem bandwidth resourcesandcomputing resourcesarealocated.Andten,acomputationalofloadingandresourceallcationstrategybasedondeepdeterministicpolicy gradient (DDPG)isproposed.Inthestrategy,theoveralllatencyofthesystemisoptimizedwhenserving multipleGTEs.The simulationresultsshowthattheproposedstrategycancompletethetaskoffoadingandresourcealocationefectively,andeduce thesystemdelaysignificantly.Theaveragedelayoftheproposedstrategyunderthetotaltaskvolumeof1~1OMBisreducedby about 40.9% , 35.59% and 30.7% ,respectively,in comparison with the three strategies of no inter-satellite link,using deep Qnetwork and full offloading.

Keywords:LEOsatelite;MEC;task offloading;resource allocation;offloading strategy;deepreinforcementlearning

0 引言

随着物联网新兴技术的发展,在各种智能设备上产生了许多延迟敏感、计算密集的应用,例如VR(虚拟现实)、AR(增强现实)、各式各样的游戏,这些应用要求很强的计算能力,如果仅依靠地面终端设备(GroundTerminalEquipment,GTE)本身的计算能力很难去满足用户低时延、高稳定性的需求4。(剩余21910字)

monitor