一种基于图学习的试飞试验点关联性挖掘算法

打开文本图片集
中图分类号:TN99-34 文献标识码:A 文章编号:1004-373X(2025)17-0160-07
引用格式:,.一种基于图学习的试飞试验点关联性挖掘算法[J].现代电子技术,2025,48(17):160-166.
Agraph-basedflighttestpointsrelationshippredictionalgorithm
LIU Peng,DENG Xiaozheng (ChineseFlightTestEstablishment,Xi'an71oO89,China)
Abstract:Thearrangementofflighttestpointsisfundamentalinflighttestig.Howtosientificallandefectivelyarange thesetestpointsandformarationalflighttestplanplaysacrucialroleinensuringsafetyficiencyandcost-ectivenes throughouttheentireflighttestlifecycle.Amongthem,theanalysisofthecorrelationbetweentestpoints,especiallthe determinationoftheprecedencerelationship,representstheexecutionorderofthetestpointsandisakeyfactorinthe arrangement oftheflighttest plan.Therefore,aknowledgemining algorithmbasedongraph convolutional neural networksis proposed tomeetthedemandforpredictingtheprecedencerelationshipof testpoints.Theentirealgorithmmodelisdevelopedin a knowledge graphbasedonthestructuralrepresentatioof test points.Subsequently,modulessuchasgraph knowledgeelement extraction,testpoints‘deepfeatureminingbasedongraphconvolution,andtestpointpairs'logicalrelationshipegreionare designedto explorethecorelationrelationshipbetweentestpointpairsandachieveaccurate precedencerelationshipprediction. Intheflighttest,thetestpointdatasetwastested,andmultipleclassicalmodelswerecompared.Theproposedalgorithm demonstratessignificantadvantagesintermsofaccracyandstability.Theeffectivenessof theproposedalgorithmisverified.
Keywords:flight test;test pointexecutionorder;graph learning;graphconvolutional network;autoencoder;knowledge graph
0 引言
近年来,随着我国航空装备的飞速发展,对飞行试验的安全和效率提出了更高的要求。(剩余10086字)