基于改进YOLOv8s的交通标志识别方法

打开文本图片集
引用格式:,,,等.基于改进YOLOv8s的交通标志识别方法[J].现代电子技术,2025,48(17):145-152.
中图分类号:TN911.73-34;TP391.41 文献标识码:A 文章编号:1004-373X(2025)17-0145-08
Trafficsignrecognitionmethodbasedon improvedYOLOv8s
QINLunming1,ZHANGYunqi1,CUI Haoyang1,BIANHouqin1,WANGXi² (1.CollegeofElectronicsandering,ShanghaiUniversityofElectricPower,ShanghaiO3O6,China; 2. eering,BeijingJiaotongUniversity,Beijing1Oo44,China)
Abstract:Inviewofthe missed detectionand false detectioncaused bythelarge scalechangeof traficsign images capturedbythecamerasofautonomousvehiclesandthelargeproportionofsmallobjects,aCMF-YOLOv8straffcsigndetection algorithmisproposed.Firstlythelarge-objectfeatureextractionlayersanddetectionheadsoftheoriginalnetworkmodelare removed,andthesmall-objectdetectionheadsareaddedtoimprovethedetectionprecisionforsmallobjectsandreducethe parameterquantity.Secondly,animprovedcoordinateatentionmechanismisaddedtothebackbonenetwork,andtheglobal channelinformationisobtainedbyglobalaveragepoolingandconvolution,andthefeaturemapisprocessed incombinationwith positioninformation,soastoimprovetheobjectdetectionacuracyofthemodelincomplexenvironments.Additionalythe FasterNetmoduleisused torefietheC2fmoduleoftheoriginalmodelandreduce theparameterquantity.Finaly,the MPDIoU lossfunctionisintroducedtotakeaccountofthenon-overlappingareas,centerdistances,andwidth-heightdeviations comprehensivelybyvertexcoordinates,whichoptimizes thecomputationprocessandimproves thedetectionacuracy. Experimental resultsshow that theCMF-YOLOv8salgorithmachieves amean average precision (mAP)of91.2%,with amodel parameter quantity of 2.7×106 .In comparison with the original YOLOv8s model,the mAPof the proposed model is improved by 5.7% ,anditsparameterquantityisreducedby76%.Inaddition,itsrecognitionaccuracyofoverlappngandoccludedtraffic signs is higher,which is of practical significance to the safety of autonomous driving.
Keywords:traficsigndetection;MPDIoUlossfunction;Channel_CAmechanism;FasterNet module;smallobject detection;autonomous driving;CMF-YOLOv8s
0 引言
随着人工智能的快速发展,带动了各行各业的一系收稿日期:2024-09-13 修回日期:2024-11-15列科技变革,在自动驾驶领域掀起了开发热潮。(剩余12694字)