基于物理解耦与自适应特征提取的无监督图像去雾

打开文本图片集
引用格式:,.基于物理解耦与自适应特征提取的无监督图像去雾[J].现代电子技术,2025,48(17):77-84.
中图分类号:TN911.73-34;TP391.41 文献标识码:A 文章编号:1004-373X(2025)17-0077-08
Unsupervised image dehazing based on physical decoupling and adaptivefeatureextraction
YAN Zaishuang1,²,HE Peng1,² (1.HubeiKeyLaboratoryofIntellgentVisionBasedMonitoringforHydroelectricEngineering,Yichang443oChina; 2.CollegeofComputerandInformationTechnology,ChinaThreeGorgesUniversityYichang443Oo2,China)
Abstract:Unsupervisedlearning isadoptedtoimprovegeneralization inrealscenarios inmanyimage dehazingalgorithms. However,theexistingunsuperviseddehazingmethodsmostlyrelyontheCycleGAN(cycle-consistent generativeadversarial network)framework andrealizedehazing bysimplecyclesofdehazing andre-hazing,soitlacks efectiveconstraintsonthe generatedimagesandresultsinsuboptimalperformance.Moreover,thesemethodsfailtosuficientlyconsiderthephysical propertiesof haze inthe featureextraction,which causesasevere lossof texturedetails.Therefore,anunsupervised image dehazingnetworkbasedonphysicaldecouplingandadaptivefeatureextractionisproposed,andthenetworkmodelisnamed UPDA-Net.Specificalyaphysicaldecoupling network(PDN)isdesigned toseparateandestimatetheatmosphericlightand transmissionmapinhazyimagesbyestablishing physicalconstraintsbasedontheatmosphericscattering model.Thisdesign allowsformoreaccuraterestorationofimageilumination,andenhancesthephysicalconsistencyandclarityofthedehazing proces.Furthermore,anadaptive featureextraction module (AFEM)isdeveloped tointegrate thephysicalcharacteristicsof atmosphericlightand transmissionmaps.Byapplying theatmosphericscateringmodelinthefeaturespace,thismodule approximatesrelevantcharacteristicsandfuses thepotential physicalfeaturesofclearimages,soastoenhance themodel's featurerepresentationcapabilityandimprovethedetailandtexturequalityoftherestoredimages.Experimentalresults demonstratethattheproposedmethodoutperformssixmainstreamdehazingalgorithmsintermsofobjectiveevaluationandvisual quality on several public real image dehazing datasets.
Keywords:image dehazing;atmosphericscatering model;physical decoupling;parameter estimation;adaptive feature extraction;unsupervised learning;CycleGAN;imagerestoration
0 引言
图像去雾是计算机视觉领域的一个重要研究课题,近年来受到广泛关注。(剩余11993字)