基于改进YOLOv7的航空发动机叶片表面缺陷检测

打开文本图片集
中图分类号:TN911.73-34;TP391.4;V260.6 文献标识码:A 文章编号:1004-373X(2025)15-0135-09
Aeroengine bladesurface defect detection based on improved YOLOv7
WURenkangl,CHENGZhijiang²,WUDongbo,WANGHui4,LIANGJiawei5
(1.CollegeofElectricalEngineering,XinjiangUniversity,Urumqi 83oo17,China; 2.Schoolof IntelligenceScienceand Technology,XinjiangUniversity,Urumqi83oo17,China; 3.InstituteforAeroEngine,Tsinghua University,Beijing1Ooo86,China; 4.Research InstituteofAero-Engine,BeihangUniversity,Beijing1O22O6,China; 5.Department of Mechanical Engineering,TsinghuaUniversity,Beijing1Ooo86,China)
Abstract:Thedetection of defectsarising during the manufactureand processing ofaero-engine blades relies heavily on manualvisualinspection.AnenhancedYOLOv7basedapproachforprecisebladedefectdetectionisintroducedtogetidof the inconsistentoutcomesduetohumansubjectivityandlimitationsandineficiency.Inviewof thefourkindsofcommontypical defects inproductionand procesing,thedatasetofaero-enginebladesurfacedefectsisconstructed.Themodelisenhanced by integrating SKNet(selectivekernelnetworks)intotheELAN-W(effcientlayeragregationnetworkswide)oftheYOLOv7's featurefusionnetwork,enablingittoobtainanadaptivereceptivefieldtoimproveitsabilityofextracting networkfeatures.The introductionofDyhead(Dynamichead)intheheadnetworkfurtherelevatesthemodel'scategoryrecognitioncapabilityand detectionperformance.Moreover,the MPDIoU(IoUwithminimumpointsdistance)lossfunctionisadopted toreplacetheoriginal CIoU(completeintersectionoverunion)lossfunction,soastoachieve more precise boundingboxregresson.The proposed methodimprovesthedetectionperformanceofthemodelwhilemaintainingahighrecallrate.Theprecisionof themodelis improved by 5.3% ,its recall rate is improved by 2.2% ,and its mAP@0.5 is improved by 3.7% . The detection time for asingle bladeis 4.93s .Thisresearch provides a novel approach for automated blade defect detection.
Keywords:computervision;defectdetection;aeroengineblade;improvedYOLOv7;deep learning;MPDIoUlossfunction
0 引言
在航空发动机叶片的生产过程中进行质量检测尤为重要。(剩余13506字)