基于CNN与Transformer相结合的工业零件缺陷检测

  • 打印
  • 收藏
收藏成功


打开文本图片集

中图分类号:TN911.73-34 文献标识码:A 文章编号:1004-373X(2025)15-0119-08

Industrial parts defect detection based on combination of CNN and Transformer

XIAXinghua1²,LIJiaying1,²,HANZhonghua1,2 (1.Schoolof ComputerScience and Engineering,Shenyang Jianzhu University,Shenyang11O168,China; 2.SchoolofElectrical and Control Engineering,ShenyangJianzhu University,Shenyang1o168,China)

Abstract:Intheprocessof industrialproduction,therewillbecracks,stainsandcreasesinparts,soitisdificult tolearn boththeglobalinformatioandedgedetailsofimagesatthesametimebyasingleneuralnetwork,anditfilstodetectdefects accurately.Therefore,thispapercombinestheadvantagesofCNN'slocalfeatureextractionwiththeTransformer'sstrongabilityto capturetheglobaldependencies,extractsimagefeaturesbythetwobranchesofResNet34andSwinTransformer,respectively, introducesatention mechanism,enhancesattentioninspaceandchanneldimensions,andotainstheoutputoffeaturefusionby splicing,ostaltsifgobldloalifoaiallcoindotsulaleoiosi of UNetstructureandthefinalsemanticsegmenationresultsarebtainedbyup-sampling,splicingandpixel-by-pielclaificatio Thesegmentationresultmapsclearlyshowthedefectlocationsintheimages,thusthedefectdetectionofindustrialpartsisrealized. Bycomparativeexperiments,theIUresultsoftheproposedalgorithmontheMVTecADdatasetof industrialproductionpartsare muchbeterthanthoseoftheothersemanticsegmentationalgorithms,andthesegmentationresultmapsare ingodagreementwith thelabelresultsof the sample images,which fullverify the efectiveness and practicabilityof the proposed algorithm.

Keywords:deep learning; industrial parts; defect detection; CNN; Transformer; feature extraction

0 引言

在工业零件生产过程中,部分零件会出现裂痕、错位、污渍、折痕、异物与缺损等缺陷,为保证工业零件生产的合格率,进行缺陷检测十分重要。(剩余7246字)

monitor