改进YOLOv8的核桃品种动态检测方法

  • 打印
  • 收藏
收藏成功


打开文本图片集

中图分类号:TN911.73-34;TP391 文献标识码:A文章编号:1004-373X(2025)15-0110-09

Walnutvarietydynamic detectionmethodbased on improved YOLOv8

LU Wentao, ZHANG Liping, ZHENG Weiqiang, LEI Jiale,PAN Zhichao (School of Mechanical Engineering,XinjiangUniversity,Urumqi 83oo46,China)

Abstract:Anovel lightweight detection algorithm YOLOv8n-EAMis introduced to enhance theaccuracyof walnut variety detectiononconveyorsystems.Byemployingamulti-scaleconvolutionalstructure,andrefiningGhostNet'sstrategyforminimizing redundantfeatures,groupedonvolution,and MobileNet'schannel feature fusion,themodel'score featureextractioncapacityis enhancedsignificantly.Toensurebeterretentionofinformationandscaleconstancyinfeaturemaps,acombinationof average poolingandmaxpolingisutlizedfordownsampling,whichimprovesthemodel'sdetectionaccuracywhiledecreasingfloatingpointoperations.Additionaly,themodelnowincorporatesanMLCA(mixedlocalchanelatention)mechanismwithinitsspatial pyramidpolingframework,enhancingitsadeptnessatseizingsemanticdetailsacrossvariedscalesattheregionofNeckComparative experimentationonaproprietarywalnutdatasetmanifeststhattheYOLOv8n-EAMalgorithmreducesfloating-pointoperations to some extent and shrinks the model size by17.7%,andadvances precisionrate,recallrate,mAP @0.5 ,and mAP@0.5: 0.95 by increments of 3.6%, 1.6% 1.4% ,and 2.8%,respectively,in comparison with the YOLOv8n algorithm. On the Pascal VOC2007dataset,theYOLOv8n-EAMalgorithmachieves relativelyhighaveragedetectionaccuracy incomparisonwith the other algorithms,with mAP@O.5and mA ′@0.5:0.95 of 58.2% and 37.2%,respectively. These results surpass those of the other object detection algorithms,providing technical support for the industrial sorting of walnut varieties.

Keywords:YOLOv8;convolutional function;lightweight network;atention mechanism;object detection;deep learning;automatic sorting;walnut variety detection

0 引言

核桃是一种富含营养的坚果,被称为四大干果之一,有丰富的蛋白质、脂肪等成分,容易被人体吸收。(剩余14255字)

monitor