基于改进TransUNet的肺部图像分割

打开文本图片集
中图分类号:TN911.73-34;TP391 文献标识码:A 文章编号:1004-373X(2025)15-0027-10
Lung image segmentation based on improved TransUNet
SHI Yongtaol,²,QIU Kangqi,²,LIU Di1,2 ,DUWei1,² (1.CollegeofComputerand Information Technology,China ThreeGorges UniversityYichang 443oo2,China; 2.HubeiKeybelVisodi
Abstract:Semanticsegmentation,asacrucial stepin lung imageanalysis,directlyafects theaccuracyoffurther image analysisandtreatmentdecisions.Thelimitationsofthetraditionalsegmentationmethods inthefaceof rregularshapes,blurrd boundaries,andnoiseoflungorgansarelowauracyandsusceptibilitytoerrorsinboundarysegmentation.Inviewof this,a multi-scaleedgefeaturefusionbasedneural network (MSB-AfTransU2Net)isproposedforlung imagesegmentation.Firstlythe encoder and decoder in TransUNet are replaced,and the RSU module of U2 -Net is used to enhance the performance of feature extraction.Then,theatentionfeature fusionmechanism isusedtoreplacetheoriginalConcatmethod,soastoreducemodel parametersandimprovethefusionefectoffeatures.Next,amulti-scalefeatureextractorandaboundary-guidedcontext aggregation moduleareadded tofuse and extract more accuratelung edgefeatures.Finally,Dicelossand crossentropylossare adoptedtoreateanovellossfunction inorder tooptimizethemodellossfunction.Theefectivenessof theproposedalgorihm wasvalidatedontheCOVID-19RadiographyDatabase dataset experimentally.The experimental resultsshow thattheMSBAffTransU2Net has improvedthe prospect intersection union ratio (pIoU)and mean acuracy (mAcc)on the COVID dataset by (204 3.03% and 0.72% ,respectively,in comparison with the TransUNet algorithm.
Keywords:COVID-19;lung image segmentation; TransUNet; edge feature;boundary-guided context aggegation module; attentional feature fusion
0 引言
自2019年12月以来,新型冠状病毒(C0VID-19)疾病给全世界人类的健康带来了前所未有的挑战[-2]。(剩余13079字)