基于时空图网络和Informer的多元时间序列异常检测

  • 打印
  • 收藏
收藏成功


打开文本图片集

中图分类号:TN919-34;TP393.0 文献标识码:A 文章编号:1004-373X(2025)15-0083-08

Multivariate time series anomaly detection based on spatial-temporal graph networkandInformer

YANGChenlong',SUNYe²,LIUXiaoyue' (1.CollegeofElectricalEnginering,NorthChinaUniversityofScienceandTechnologyTangshanO63210,China; 2.China Academy of Informationand Communications Technology,Beijing1Oo191,China)

Abstract:Efectiveanomalydetection for multivariate timeseriescan ensure thesecurityofIoTsystems.In theexisting methods,localspatial-temporalrepresentationsareusuallylearedfromnearbytimepointsandneighboringnodesinodertoreconstructorpredictsensordata.AmultivariatetimeseriesanomalydetectionmodelSTGINisproposedtoeliminatefalsealarms andanomalyomisioncausedbythedificultyof modelingcomplexnonlinear topologicalrelationshipsanddynamic temporalpatternsinthelocalrepresentations.Firstlytemporalconvolutionalnetwork(TCN)ismbeddedintomultiscaleresidualcovolutionalnetworktoapturetemporalfaturesatteortegaularitylevelandgatingmchansisintroduedtofilter outtheirrelevantinformation.Thentespatialgaphstructureisonstructedandhecomplexspatial-tmporaldependenciesare learedefcientlybythegraphatentionnetwork.Finally,thepredictionandreconstructionmoduleareoptimizedjointlythe variationalself-encoderandInforerareemployedforlongtimeseriesreconstruction,andteextractedglobalandlocalspatialtemporalcorelationsareused todetectanomaliesinnormaldatasamples.ExperimentswereperformedonMSL,SMAPand SWaT public datasets.The obtained F1 -scoresare 0.9623,0.9425and 0.8709,respectively,which are better than thebenchmark models,verifying the effectiveness and feasibility of the proposed method.

Keywords:multivariate time series;anomaly detection;TCN; gated mechanism; graph atention network; Informer

0 引言

随着物联网连接的传感器设备迅速增加,物联网产生了大量传感器数据,其特征是地理和时间依赖性。(剩余12061字)

monitor