CNN-LSTM在多模态人体动作识别中的应用研究

打开文本图片集
中图分类号:TN911.73-34;TP391 文献标识码:A 文章编号:1004-373X(2025)15-0078-05
Research on application of CNN-LSTM in multimodal human body actionrecognition
WANG Tong (FujianNormal University,Fuzhou 350117,China)
Abstract:Since thereare multipletypes of objects intheenvironment,and lightingconditionsandoclusion mayffectthe effectofactionrecogntion,amultimodalhumanbodyactionrecognitionmethodbasedonCNN-LSTMisproposed.Twokindsof multimodalbehaviordata,depthimagedataandresultantacelerationdatawhichcanreflethumanbodyactions,arecolleted andinpuintoCNNmodel.Afterconvolution,dowsamplingandotherprocesing,theskeletal jointfeaturemapandresultantaccelerationvariancefeature mapofthehumanbodyactiondepth imageareextractedasthemultimodalfeature samplesof human bodyactions,whicharetheninputintotheLSTmodel.Andthen,incombinationwiththetemporalcharacteristicsof human bodyactions,theafinetransformationrelationshipbetweenthecurrentmultimodalfeaturesamplesandactiontypesislearned. Inalltimesteps,theactionclassficationresultsoutputbytheLSTMmodeloutputgatearecolleced,avotingdecisionmethod isintroduced,andtheclasificationresultswithtemostocurrencsaetakenastheulimodalumanbodyactionegition results.Theexperimentalresultsshowthattheproposedmethodcanrecognizemultipletypesof humanbodyactionsaccurately in both normal and low light environments.
Keywords:CNN-LSTM;multimodal humanbodyaction;typerecognition;Kinectsensor;skeletal joint;inertialsensor;re sultantacceleration
0 引言
人体动作识别专注于解析和分类人体的运动、姿势及行为模式,旨在实现对人体动作的精准自动辨识与深刻理解[1-2]。(剩余5446字)