基于残差学习的矿井无线信道估计的算法研究

打开文本图片集
中图分类号:TN929.4-34 文献标识码:A 文章编号:1004-373X(2025)15-0001-05
Research on algorithm for mine wireless channel estimation based on residual learning
WANGAnyi,LIMingzhu,LIXinyu,LIRuoman (CollgeofCommunicationandInformationTechnologyXi'anUniversityofienceandTechnology,Xi'an7o54Cina)
Abstract:Theexisting channel stimationneuralnetwork modelsusuallyignoreoff-diagonal elementsand temporal sequenceinformationinchannelgaincorrelationmatrices,soadeeplearningtechnologyisintroducedtoaccuratelyestmatethe channelbasedondownlinkpilotinorthogonalfrequencydivisionmultiplexing(OFDM)system.Aninnovativedeepneural networkmodelbasedonecursiveresiduallearningisproposed.Inthismodel,thesequentialdataareprocesedefectielynd thetemporalcorelationofchannelstatesiscapturedwithitsrecursivestructure.Additionall,,theintroductionofresidual connectionsefectivelymitigatesthegradientvanishingproblemcommonlyocurredindeep learning,whichenhancesthe trainingeffectoftheodelsignificantly.Furthermore,tisstudyintegatestheSE(queze-and-excitation)atentionmhaism, whichenablesthenetwork toadaptivelyadjustitsfocusondiferentchannelmatrices,therebyimprovingfeatureextractionand classification eficiency.Evaluationsof therecursiveresidual network-basedchannelestimationmodelunderthe3GPPchanel modeldemonstratethatthemethodoutperformsthetraditionalleast-squaresmethodsandtheReEsNetchannelestimation algorithm in terms of channel estimation error.
Keywords:mine communication;deep learning;residual learning;atention mechanism; OFDMsystem;time seriesdata; gradient vanishing problem;3GPP channel model
0 引言
在煤矿智能化建设[1-3中,稳定可靠的宽带无线通信系统发挥了至关重要的作用。(剩余6305字)