基于UAV-YOLO的无人机航拍图像轻量化目标检测算法

打开文本图片集
中图分类号:TN911.73-34 文献标识码:A 文章编号:1004-373X(2025)15-0051-06
UAV-YOLO-based lightweight object detection algorithm for UAV aerial images
1,2,3, 1,2,3, 1,2,3 (1.Collegeof Computer and Cyber Security,Hebei Normal University,Shijiazhuang O5oO24,China; 2.Hebei KeyLaboratory of Network and Information Security,Shijiazhuang O5oo24,China; 3.HebeiProvincialEngineeringResearchCenterforSupplyhainBigDataAnalyticsandDataSecurityShijiazuangO524ina)
Abstract:Inresponse to thechallenges inunmannedaerial vehicle(UAV)imageanalysissuch ascomplex backgrounds, lowaccuracyindetectingsallobjectsandighmissinginspectionrates,a UAV-YOLO,lightweightobjectdetectionalgorithm basedoYOLOv7specificallydesignedforUAVaerialimages,isproposed.Firstly,alightweightconvolutionmodule,PSConv (partialconvolution),isconstructedbasedonpartialconvolutionstoreducenetworkcomplexitywhilemaintainingdetection performance.Secondly,a downsampling module is integratedwithanatention mechanism to buildtheMA-ECAmodule.Then, thedetectionheadsofthenetworkisoptimizedbyaddingsmallobjectdetectionheadsandremovinglargeobjectdetection heads.Finallytheocal-SIoUlossfunctionisproposedtofurtherimprovethedetectionaccracyofthemodel.Thealgorithm wasvalidatedonthepubliclyavailableVisDrone2O19andUAVDTdatasets.Incomparisonwiththeother models,theproposed algorithm improves the detection accuracy efectively while reducing network parameters and computational complexity.
Keywords:YOLOv7; UAV;smallobject detection;lightweight network;partial convolution;attntion mechanism
0 引言
近年来,随着无人机技术越来越成熟,无人机被广泛应用于各个领域,如智慧城市、灾后救援和农业检测[2。(剩余8284字)