基于关键点定位的脊柱冠状位Cobb角自动测量方法

  • 打印
  • 收藏
收藏成功


打开文本图片集

中图分类号:TN919-34;TP391 文献标识码:A 文章编号:1004-373X(2025)15-0127-08

Keypoint positioning based automaticmeasurement of Cobb angle in spine coronal position

JIANGPeng1,TANGYu',HEZhiqin1,WUQinmu1,WANGLihang2 Colegei;i

Abstract:Scoliosisisaseriousdiseasethatimpacts humanphysicalhealthsignificantlyandtheCobbanglecanreflectthe severityof scoliosis.Inviewofthetime-consumingmanual measurement,largeerrorandlowaccuracyofCobbangle measurement intheexisting deeplearning methods,acoronal Cobbangleautomaticmeasurementmethodbasedon keypoint positionigisproposed.Inthismethod,akeypointlocalizationnetworkbasedoncenterwithofsetisusedtolearntheoffset betwenthevertebralvertexandcenterpoint,enablingvertebralvertexcordinateregresion.Supervised trainingisalso conductedbydjacentvertebralofsetstoutilzevertebalpositioniformationfullandachievepreciselocalizatio.Finalypretraining isconductedontheCOCOdatasetbytransferlearning.Theresultsof experimentsonlocalandopendatasets demonstrate thattheproposedmethodcan locatevertebralcenterandvertexaccurately.Inadition,the meanabsoluteerrors (MAEs) between the measured Cobb angles of the three segments and the true values are 3.0∘ , 2.5∘ ,and 2.4∘ ,respectively,and thePearsoncorelationcoeficientsisO.94,0.95,and0.95.Tosumup,theproposed methodcanrealize theautomatic measurement of Cobb angles accuratelyand reliably.

Keywords:scoliosis;Cobbangle;keypoint positioning;centerpointofset;ofsetof adjacent vertebrae;transferlearning

0 引言

近年来,为实现自动的Cobb角测量以及减小测量误差,采用深度学习的方法进行Cobb角自动测量成为了研究热点,其主要分为两类,即基于分割模型的方法和基于坐标回归的关键点检测方法。(剩余10078字)

monitor