基于改进孤立森林的大规模网络人侵攻击检测研究

打开文本图片集
中图分类号:TN711-34;TP391 文献标识码:A 文章编号:1004-373X(2025)15-0098-05
Research on large-scale network intrusion attack detection basedonimprovedisolationforest
XU Wei²,LENG Jing² (1.WuhanUniversity,Wuhan43oO72,China; 2.Department of Information Technology,Hubei University of Police,Wuhan 43oo34,China)
Abstract:Becauseof thelarge-scalenetwork,theperformance of the detection process fluctuatesgreatly,and the identificationaccuracyofpotentialatacksispoor.Therefore,alarge-scalenetwork intrusionattckdetectionmethodbasedon improvedisolationforestisproposed.Alarge-scalenetwork intrusionatack detectionframework isbuilt.Thelarge-scalenetwork dataarecollctedandpreprocessd.Thelrge-scalenetworktraffcfeaturesareextractedbyasociation-basedfeatureselection methodsandtransmittedintothe intrusionattack detectionmodule.Intheintrusionatack detection module,animproved isolatioforestalgorithmisadoptedtocalculatetheabnormalscoreoffeaturedatabytraversingnetworktraficfeaturedata basedonisolationtrees,solateaboraldatapointsccuratelyandachieveattackdetection.Onceananomalyiseteedthe logalarmodulesendsanalertandrecordsthecorespondingrulesintherulelibrary.Theexperimentalresultsshowthatthe abnormalscorecalculationresultsof theproposed methodarewithintherangeofO.79~O.99,whichcan identifyintrusionaack traffic accurately,and its detection accuracy rate exceeds 99%.
Keywords:improvedisolationforest;large-scalenetwork;invasionattack;segmentationpoint;traficfeature;abnoral score;feature selection
0 引言
大规模网络人侵攻击常带来数据泄露、篡改及损毁风险,可能引发系统崩溃、服务停滞或性能衰退,甚至造成经济损失。(剩余5650字)