基于神经网络的滤波天线单元优化技术研究

  • 打印
  • 收藏
收藏成功


打开文本图片集

中图分类号:TN822+.4-34 文献标识码:A 文章编号:1004-373X(2025)15-0006-05

DOI:10.16652/j.issn.1004-373x.2025.15.002

Research on filtering antenna element optimization technology based on neural network

CHENJunda1,²,WUJie³,ZHAOJianing4,5,LUPei1,²,YANGRuoyang4,5,ZHANGHaichuan6

(1.CollegeofComputer Scienceand Engineering,Guilin Universityof Technology,Guilin 541006,China; 2.GuangxiKeyLaboratoryofmbededcholodIteligentystem,GuilinUnivesityofechologyGuilin4ina; 3.China Academy of Aerospace Electronics Technology,Beijing 1Ooo94,China; 4.YangtzeDeltaRegionInstitute(Huzhou),UniversityofElectronicScienceandTchnologyfChina,Huzhou330o9,Cina; 5.Huzhou KeyLaboratoryof Terahertz Integrated Circuitsand Systems,Huzhou 313oo9,China; 6.KeyLaboratoryofHighPowerMicrowaveTechnology,NorthwestInstituteofNulearTechnology,Xi’an7oO24,China)

Abstract:Thedesignoffilteringantennaelementsinvolvesmultidimensionalparameteroptimization,and traditional electromagneticsimulationmethodsarenotonlyslow,butalsostruggletoidentifytheglobaloptimuminacomplexparameter space,therebylimiting designaccuracyandperformanceenhancement.Therefore,amethodthatintegrates forward prediction with inverseoptimizationisproposed.Inthismethod,theneuralnetworksareemployedtopredictantennaelementperformance, andthe filteringantennaelementsareoptimizedgloballyinamulti-parameterspaceincombinationwiththegeneticalgorith. Simulation results indicate that the optimized S21 parameter exhibits an 82.65% increase in average value across the pass band from 11.5 GHz to 16.5 GHz, with auniform in-band response.In addition, S21 is improved by 87.5% after optimizing the average valueoftransmissonamplitudewiththecenterfrequencyof14GHz.Thetransmissonamplitudeisimprovedsignificantlyand thetransmisionphase shiftis more linear.Thesimulationresultsafteroptimizationshowthattheseimprovementsenhancethe overallperformanceof theantennasignificantlyespeciallyintransmissioneficiencyandfrequencyresponse.Tosumupthe proposed method provides valuable reference for the further development of the filtering antennas.

Keywords:neural network;genetic algorithm; forward prediction; inverse optimization; filtering antenna; S -parameter

0 引言

在现代通信系统中,天线作为信息传输的关键组件,其性能直接影响整个系统的效率和可靠性。(剩余6158字)

monitor