RPPM-Net:基于多尺度特征并行融合的图像识别方法

  • 打印
  • 收藏
收藏成功


打开文本图片集

中图分类号:TN911.73-34;TP391.4 文献标识码:A 文章编号:1004-373X(2025)15-0071-07

RPPM-Net: Image recognition method based on multi-scale featureparallel fusion

LIUSiyuan,ZHANGWendong,LURun,NIUSen,MAMengnan (School ofSoftware,XinjiangUniversity,Urumqi83oooo,China)

Abstract:The traditional deep neural networkshavesome deficiencies intheimagerecognitiontasks,forinstance,failure tofocusonkygiosndatusielyfatiogadatiouetallssoyeldndisuntalio abilityof themodel,soanimagerecognitionnetworknamedresidualparalelpyramidmulti-net(RPPM-Net)whichisbasedon multi-scaleparalelfusionisproposed.Aparallattentionnetworkisdesignedtocapturediversefeatureinformationbyahybrd atentionmechanismwithparalelmultipleheads,whichenhancestheetwork'sabilitytofocusonimportantregionsandkeyfeatures intherecognitiontaskswhilemaintainingthemodeleficiencysoastostrengthenitsatentiontokeyfeatures.Amultiscalepyramidalconvolutionalatentionmoduleisdesignedtoavoidinformationdegradationduetothesmallsensoryfieldby effectivelyintegratingulti-scalefeaturesatdiferentlayers.Theenhancdfullyconnectedlayeandregularizationtechiqueare adoptedtoeffctivelyllviatetheoverfitingndimprovethegeneralizationabilityofthemodelondiferentdatasetsTheexperimental results show that the accuracy rate of RPPM-Net on CIFAR-10,CIFAR-100,and Caltech-256 datasets reaches 97.02% 85.04% and 89.69% ,respectively,which can combine structural regularization and feature fusion fully and enhance the network performance effectivelywithout significantlyincreasing the computational cost.

Keywords:imagerecognition;convolutionalneural network;multi-scalefeature;parallelatention;pyramidalconvolution; feature extraction

0 引言

图像识别是计算机视觉领域中的重要研究方向,其主要任务是从原始图像数据中提取特征,并基于这些特征对图像内容进行识别和分析。(剩余10273字)

monitor