深度学习神经网络在火电厂阀门故障诊断与预警中的应用

  • 打印
  • 收藏
收藏成功


打开文本图片集

摘 要:针对燃煤发电机组的重要执行机构阀门,通过深度神经网络算法对机组大量运行数据进行学习,构建重要执行机构阀门在全负荷工况下的精准数学模型,以深度神经网络模型预测值和皮尔逊相关系数判别为依据,实现重要执行机构阀门的故障诊断和早期预警。结果表明,基于大数据,学习和深度神经网络算法的数学模型有效地实现了对执行机构阀门的故障诊断和提前预警,指导运行人员进行提前干预和检修,减少机组的故障率。(剩余7154字)

目录
monitor