基于意图—槽位注意机制的医疗咨询意图理解与实体抽取算法

  • 打印
  • 收藏
收藏成功


打开文本图片集

摘要:自然语言理解作为医疗对话中的关键组成部分,包含意图识别和槽位填充两个重要的子任务。为建立意图和槽位的相互促进关系,实现语义层次上的建模,提出了基于意图—槽位注意机制的医疗咨询意图理解与实体抽取算法。首先,收集医疗信息网站上用户的医疗健康提问文本,基于医学知识归纳总结了24类医疗意图和5种槽位,构建了中文医疗健康咨询数据集(CMISD-UQS);然后,引入槽位选通机制来建模意图和槽位向量之间的显式关系,设计了意图—槽位注意机制层,构建了意图上下文信息以意图标签向量方式嵌入到槽位的方式。(剩余14330字)

目录
monitor