非平稳数据流下的持续学习灾难性遗忘问题求解策略综述

  • 打印
  • 收藏
收藏成功


打开文本图片集

摘 要:持续学习作为一种在非平稳数据流中不断学习新任务并能保持旧任务性能的特殊机器学习范例,是视觉计算、自主机器人等领域的研究热点,但现阶段灾难性遗忘问题仍然是持续学习的一个巨大挑战。围绕持续学习灾难性遗忘问题展开综述研究,分析了灾难性遗忘问题缓解机理,并从模型参数、训练数据和网络架构三个层面探讨了灾难性遗忘问题求解策略,包括正则化策略、重放策略、动态架构策略和联合策略;根据现有文献凝练了灾难性遗忘方法的评估指标,并对比了不同灾难性遗忘问题的求解策略性能。(剩余38095字)

目录
monitor