基于混合采样的图对比学习推荐算法

打开文本图片集
摘要:在推荐系统领域中,图卷积网络具有对于图结构数据更强的信息抽取能力。然而,现有的图卷积网络推荐算法主要关注改进模型结构,忽视了提高原始样本采样质量与挖掘用户—项目间隐式关系的重要性。针对上述问题,提出一种基于混合采样的图对比学习推荐算法。首先使用混合采样方法,提取出正样本中部分信息并将其注入负样本,从而生成全新的富含信息的难负样本;其次,通过轻量图卷积网络对难负样本进行特征提取,得到用户和项目的节点表征,采用邻域对比学习方法挖掘样本隐式关系;最后,利用多任务策略对推荐监督任务和对比学习任务进行联合优化。(剩余14267字)