TR-Light:基于多信号灯强化学习的 交通组织方案优化算法

  • 打印
  • 收藏
收藏成功


打开文本图片集

摘 要:  针对多变环境条件下的交通堵塞问题,将强化学习、神经网络、多智能体和交通仿真技术结合起来,提出了用于优化多路口条件下交通状况的trajectory reward light(TR-Light)模型。该方法具有几个显著特点:基于红绿灯拟定交通组织方案;将多智能体强化学习用于红绿灯控制;通过红绿灯的协同达到区域级的交通组织优化;在智能体每次行为执行结束后实施轨迹重构,在OD对不改变的情况下改变车辆行驶路径,根据方案和重构轨迹来计算智能体的最终回报。(剩余18572字)

目录
monitor
客服机器人