基于改进图正则项的自编码器特征学习算法

  • 打印
  • 收藏
收藏成功


打开文本图片集

摘 要:  传统的图正则化方法使用欧氏距离度量样本空间的相似度,并不能准确考察复杂数据集的邻域信息,容易导致模型在复杂形状数据和非凸数据集中的泛化性能下降。提出一种改进的图正则算法,使用等距特征映射保留样本空间的邻域信息,帮助模型进行流形学习,同时结合使用KL约束进一步使得数据表示的外部结构变得光滑,从而捕获到更稀疏和高级的特征表示。(剩余15944字)

目录
monitor
客服机器人