基于UKF的水下装备轨迹估计滤波算法

  • 打印
  • 收藏
收藏成功


打开文本图片集

中图分类号:P715.9 文献标志码:A 文章编号:105-9857(2025)01-052-09

(1.ScholofOceanandEarthScience,TongjiUniversity,Shanghai,China; 2.ScholofElectronicandInformationEnginering,TongjiUniversity,Shanghai,China)

Abstract:TheunderwaterequipmentcariedbytheEastChinaSeaseabedobservationnetwork isoftenlostduetohumanactivities.Whensolvingthetrajectoryofunderwaterequipmentbyinertialnavigation,thenoisecausedbythecomplexoceanenvironmentandsudenmotionleads tolargecalculationerors.Aimingatthelimitationthattheclasicunscented Kalmanfilter nedsacuratenoisemodelanddynamicmodeltooutputbeterfilteringresultsinthetrajectory estimationproces,anadaptivefilteringalgorithmbasedonSage-HusaunscentedKalmanfilter isproposedforsolvingthetrajectoryofunderwaterequipmentbeingtowed.Firstly,theimplementationproces oftheclasicunscentedKalmanfilterisexplained,andtheideaofSage-Husa adaptiveadjustmentofnoiseisintroduced;then,onthisbasis,thepredictionresidualvectoris introducedtoreducetheinfluenceofgros eroronthefilteringresult,andatrackingfactoris introducedtoimrovetheadatabilit ofthefiltertosudenmotion;final ,theefectivenesof thealgorithmisverifiedbysimulationexperimentsandtowingexperiments.Theexperimentalresults showthatheadaptivefilteringalgorithmbasedonSage-HusaunscentedKalmanfilterefectively reducesthedivergenceerorcausedbytheunderwateracousticenvironmentandsudenmotion, andimprovesthepositioningacuracyandpositioningstabilityofunderwaterequipmentwhen beingtowed.

Keywords:Unscentedkalmanfilter,Adaptivefilteringalgorithm,Underwaterequipmenttowing,Advancedalgorithm

0 引言

随着科技的发展和建设海洋强国战略目标的提出,东海海底观测网作为我国首个智能化、一体化、开放式的海底观测网,现已取得良好的成果[1]。(剩余11068字)

monitor
客服机器人