基于哨兵光学的兴安盟土攘有机碳密度遥感反演研究

  • 打印
  • 收藏
收藏成功


打开文本图片集

关键词:土壤;有机碳密度;哨兵光学;遥感;反演;兴安盟

中图分类号:TP237 文献标识码:A

文章编号:0439-8114(2025)11-0175-07

DOI:10.14088/j.cnki.issn0439-8114.2025.11.024 开放科学(资源服务)标识码(OSID):

A remote sensing retrieval study of soil organic carbon density in Xing'an League based on Sentinel optical data

WANG Xin-xin !1 ,YUJing2,34,ZHU Hua-chen4, ZHAO Zhen-ni4, CHEN Xiao-long4 (1.hoolaCioJUsig;aen University,Chogqing4o44,hina;3.ChongqingSchol,UniversityofCineseAcadeyofienes,Chongqing0oa; 4.Chongqing Geomatics and Remote Sensing Application Center,Chongqing 401120, China)

Abstract:AspatialestimationofsoilorganiccarbondensityinXing’anLeagueoftheInnerMongoliaAutonomousRegionwasconductedfortheyear2O23usingremotesensingandgeographicinformationtechnologies.Multipleenvironmentalvariableswereextractedbasedonremotesensingdataandevironmentaldata(e.g.,terrain,climate,soil),withsoilpropertydataobtainedfromfieldsoil samplingserving as theresponse variable.Regressionmodeling andaccuracycomparisonwereperformedusing RandomForest(RF), Extreme Gradient Bosting(XGBoost),and Multilayer Perceptron(MLP).Basedontheacuracy evaluationresults,thebest-performingodelwasselectedtoultimatelycompletethespatialmappingofsoilorganiccarbondensityinthestudyarea.Theresults showed that the RF model performed the best ( Rz=0.86 , RMSE=1.51kg/m2 ),the XGBoost model performed slightly worse than the RFmodelbutstillwell,whiletheMLPmodelperformedsignificantlyworseinthistask,withitsaccuracyeing muchlowerthanthe othertwo models.Thespatialdistributionofsoilorganiccarbondensityin Xing'anLeagueshowedobvious north-southdiferences, generallydecreasingfromnorthwestosoutheast.Intemsofverticaldistribution,theorganiccarbondensityfirstdeereasedanden increased with increasing sampling depth.

Key Words: soil;organic carbon density;Sentinel optical; remote sensing; inversion;Xing'an League

土壤有机碳密度作为全球碳循环和碳储量的重要组成部分,在应对气候变化和实现碳中和目标中具有关键作用[1]。(剩余9451字)

目录
monitor
客服机器人