基于对抗网络的文本情绪分析性别偏见消减方法

  • 打印
  • 收藏
收藏成功


打开文本图片集

摘要:近年来,性别偏见引起自然语言处理领域研究者们的关注。已有研究工作证实,性别偏见不仅影响模型性能,且其传播将进一步对下游产品产生一定的危害。文章探究性别偏见对文本情绪分析的影响,提出基于对抗网络模型的性别偏见消减方法。实验结果表明,在文本数据集上,文章提出的对抗性训练方法相比其他减偏方法,使TPR-GAP下降约0.02~0.03,而性能只降低了0.8个点。(剩余7042字)

目录
monitor
客服机器人