YOLOv8算法分类识别机收甘蔗杂质的研究

  • 打印
  • 收藏
收藏成功


打开文本图片集

关键词机收甘蔗;YOLOv8;杂质;分类;识别中图分类号S225 文献标识码A文章编号 0517-6611(2025)08-0200-05doi:10.3969/j.issn.0517-6611.2025.08.041

开放科学(资源服务)标识码(OSID):

AbstractInvieoftesugarfactoriesrelyentirelyonmanualjudgmentofteimpurityontentinmechanicallyharestedsugarcaehich ishighlysubetiedckssetifsissedpgestoexpeasifatiodcoofimprih callyharvestedsugarcaneeainfocusdbenuildanmageacquisionplatfoanddtaset,selected,aidut,nddsigdhadwareuchasomputersustralameras,ndligsuceseOoritadedtoraindtectatasefoasification,used recall,precision,and average precision mean quantitative evaluation of the detection results,showed that the YOLOv8 algorithm achieved an average accuracy of 7 7 . 4 % in classifying and recognizing machine harvested sugarcane,efectively distinguishingitsdifetoots.solsahillrinfudatiofoubseeeiofipuritotce harvested sugarcane.

KeywordsMachine-harvested sugarcane;YOLOv8;Impurity;Classify;Identify

我国是全球第三大甘蔗生产国[,对于机械化作业需求很高,其中机械化收获在多年的发展中取得了一定进步,但收获后会混有不同种类杂质,如蔗梢、蔗叶、泥沙等,而杂质含量是影响制糖产糖率和经济效益高低的关键因素之一[2]同时会造成糖厂设备使用寿命缩短、生产成本增加以及一级糖料出糖率降低等。(剩余6738字)

目录
monitor