元学习混合模型预测中国生猪价格方法研究

  • 打印
  • 收藏
收藏成功


打开文本图片集

中图分类号:F323.7 文献标志码:A 文章编号:2096-9902(2025)13-0001-05

Abstract:Accuratelypredictingpigpricefluctuationsisof greatsignificance tomaintaining thebalanceofmarket supply anddemand,optimizingproductiondecisionsandensuringthestableoperationoftheindustrialchain.Aimingattheshortcoming oftraditionalpredictionmethodsininsuffcientgeneralizationabilityinsmallsamplescenarios,thispaperconstructsahybrid predictionframeworkbasedonSeasonal-TrendDecompositionusingLOESS(STL)andModel-AgnosticMeta-Learning(MAML). Specificall:First,STLdecompositionisusedtodecouplethetimeseriesdataofpigpricesintothreecomponents:trendterms, seasontermsandresidualterms,whichefectivelyenhances featureinterpretabilityandsuppresesnoiseinterference;thena dual-stagemeta-learningmechanismisdesigned-inthebasictrainingstage,LSTMandGRUnetworkarchitecturesareusedto conductmuti-taskpre-trainingonpigandporkpricestolearnsharedfeaturerepresentationsofpricefluctuationsacrossbreds; Intherapidadaptationstage,therapidmigrationofthemodelinsmallsampletargetscenariosisachievedthroughcolaborative optimizationofMAMLsinternalloopparameterfine-tuningandexterallopmeta-parameterupdate.Empiricalresultsshowthat thismethodhassignificantimprovementoverthebenchmarkmodelintermsofroot-mean-squareeror(RMSE)andmeanabsolute eror(MAE)indicators,providinganinterpretableandtransferabledecisionanalysistolfortheconstructionofagricultural economic early warning systems.

Keywords: pig price prediction; meta-learning; MAML; STL; LSTM和机器学习方法。(剩余8409字)

目录
monitor