面向5G的云边端协同计算资源优化与任务调度研究

打开文本图片集
摘要:该文针对“云-边-端”场景下资源分配与任务调度效果不佳的问题,提出基于权重综合成本模型的模拟退火算法优化策略。仿真实验表明,该策略能显著提升资源利用率、降低任务延迟和系统成本,对5G网络的资源分配与任务调度优化具有重要实用价值。
关键词:多接入边缘计算;云边端协同;资源优化;任务调度;模拟退火算法
doi:10.3969/J.ISSN.1672-7274.2024.12.025
中图分类号:TN 929.53;TP 393 文献标志码:A 文章编码:1672-7274(2024)12-00-04
Research on Cloud-Edge-End Collaborative Computing Resource Optimization and Task Scheduling for 5G
QU Dingchun
(Gongcheng Management Consulting Co., Ltd., Guangzhou 516030, China)
Abstract: This study addresses the issue of inefficient resource allocation and task scheduling in the "cloud-edge-end" scenario, proposing an optimization strategy based on a weighted comprehensive cost model and simulated annealing algorithm. Simulation experiments demonstrate that this strategy significantly improves resource utilization, reduces task latency, and lowers system costs, thus holding substantial practical value for resource allocation and task scheduling optimization in 5G networks.
Keywords: multi-access edge computing; cloud-edge-end collaboration; resource optimization; task scheduling; simulated annealing algorithm
0 引言
随着互联网及5G技术的迅猛发展,全球接入互联网的终端设备数量于2023年激增至300亿个,伴随而来的是对计算需求高、时延敏感的应用的激增。(剩余3343字)