基于深度学习的低轨卫星互联网建设研究

  • 打印
  • 收藏
收藏成功


打开文本图片集

摘要:为提升卫星通信的效率和质量,该文聚焦低轨卫星互联网,运用深度学习理论,创新性地提出一种低轨卫星网络算法。通过明确系统运行问题,构建多智能体算法系统,以优化低轨卫星互联网建设,满足高质量通信需求,为卫星通信行业发展提供新思路与经验借鉴。

关键词:深度学习;卫星通信;低轨卫星;互联网建设

doi:10.3969/J.ISSN.1672-7274.2024.12.007

中图分类号:TN 927+.2;TP 393.4          文献标志码:A            文章编码:1672-7274(2024)12-00-03

Application Research on Low-Orbit Satellite Internet Construction Based on Deep Learning

GUO Xiangliang WEI Chuanqi ZHANG Shi

(1. China Academy of Information and Communications Technology, Beijing 100191, China;

2. Landspace Technology Corporation, Beijing 100176, China)

Abstract: To enhance the efficiency and quality of satellite communications, this paper focuses on low-orbit satellite internet and innovatively proposes a low-orbit satellite network algorithm using deep learning theory. By identifying system operational issues and constructing a multi-agent algorithm system, we aim to optimize the construction of low-orbit satellite internet to meet high-quality communication demands, providing new insights and experiences for the development of the satellite communication industry.

Keywords: deep learning; satellite communication; low-orbit satellite; Internet construction

0   引言

随着物联网技术的蓬勃发展,卫星通信网络中的用户终端节点数量急剧增加,这一趋势正有力推动着卫星通信行业的快速进步。(剩余4182字)

目录
monitor