基于多维数据的零售客户价值分类模型构建与应用

打开文本图片集
摘要:该文利用海量业务数据、客户数据和旅游市场环境数据,基于K-MEANS聚类算法模型及RFM客户价值分析模型,对长沙旅游市场零售客户进行价值类型识别,进而根据4P营销理论对不同类型客户制定精准化营销策略。
关键词:烟草;K-MEANS;RFM模型;客户价值分类;4P营销理论
doi:10.3969/J.ISSN.1672-7274.2024.12.003
中图分类号:TP 393.02 文献标志码:B 文章编码:1672-7274(2024)12-000-03
Construction and Application of Retail Customer Value Classification Model Based on Multidimensional Data
LI Ke LI Yue GAO Xiang YIN Huan
(1. Hunan Tobacco Company Changsha Branch, Marketing Center, Changsha 410000, China;
2. Changsha Tobacco Company Wangcheng Branch, Customer Service Branch, Changsha 410200, China;
3. Changsha Tianxin Ge Big Data Research Institute, Changsha 410017, China)
Abstract: This article uses massive business data, customer data, and tourism market environment data, based on the K-MEANS clustering algorithm model and RFM customer value analysis model, to identify the value types of retail customers in the Changsha tourism market, and then formulate precise marketing strategies for different types of customers according to the 4P marketing theory.
Keywords: tobacco; K-MEANS; RFM model; customer value classification; 4P marketing theory
随着网红长沙旅游产业的持续兴旺,在长沙旅游市场中的卷烟生态也发生深刻变化,呈现出新的规律和趋势。(剩余2940字)